Lecture II

In this lecture, well start a detailed Study of the symmetric group S_{n}. We leamed about S_{3} ie lecture Z and now we will study S_{n}, if $n \geq 3$. First, lets recall

Definition Let B be a non-empty set. A permutation of B \dot{b} a function from B to B which is a bijection, i.e., it is both one to ore and onto.

When B is a finite set then we can take $B=\{1,2, \ldots, n\{$ is B has n elements. The group S_{n} is defined as follows:-

Definition Let $B=\{1,2, \ldots, n\}$. The set of all permutations of B is the group S_{n} under the operation of composition of functions. It is called the symmetric group of degree n.

Suppose $\alpha \in S_{n}$, then $\alpha:\{1, \ldots, n\{\rightarrow\{1,2, \ldots, n\}$ and α is a bijection. We saw ie Lee. 3 about another way to represent α,

$$
\alpha=\left[\begin{array}{cccc}
1 & 2 & \cdots & n \\
\alpha(1) & \alpha(2) & \cdots & \alpha(n)
\end{array}\right]
$$

Exercise Prove that S_{n} is a group and

$$
\left|S_{n}\right|=n!=n \cdot(n-1) \cdots 1 .
$$

Exercise Prove that $f n \geq 3, S_{n}$ is non-abelian.
Hint:- Construct two functions ie such a way that they give different functions by changing
the order of composition.
Cycle Notation
Since S_{n} has n ! elements, is we keep representing them as a matrix, it ill become cumbersome. Also, it's hard to deduce new properties about S_{n} with that notation. The cycle rotation is very advantageous in that respect.

Weill understand cycle notation through examples. Let $\alpha \in S_{6}$ given by

$$
\alpha=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 4 & 3 & 1 & 6 & 5
\end{array}\right]
$$

This can be schematically represented as follows

i.e., we are starting with 1, draw a cycle to the element $\alpha(1)$ (2 in this case). The draw next cycle to $\alpha(\alpha(1))$ (ir this case $\alpha(2)=4$). keep drawing it till we reach 1 . We know weill reach 1 eventually as α is onto.
Once a cycle is clone, start with the element not yet represented sire the cycle, which is 3 vie this case. Since $\alpha(3)=3$ so the cycle starts from 3 and ends at 3 .
Restart from the elements left lie both the cycles, i.e. 5 and 6 and repeat the procedure.

However we cont keep drawing arrows to represent cycle, so we simply write

$$
\alpha=(124)(3)(5,6)
$$

which is telling wo that α

* maps 1 to 2,2 to 4 and 4 again to 1 iii. $(1 \ldots \rightarrow 2 \cdots, 4)$.
* maps 3 to 3 hence (3).
* maps 5 to 6 and 6 to 5, hence (56).

In fact, (3) is just telling us that $\alpha(3)=3$, so weill omit that too and just write

$$
\alpha=(124)(56)
$$

cycle notation for α
keeping in mind that since $\alpha \in S_{6}$ and 3 is missing from the notation, so $\alpha(3)=3$.

Let's see another example. Let $\beta \in S_{8}$ with

$$
\beta=\left[\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 2 & 5 & 7 & 6 & 1 & 4 & 8
\end{array}\right]
$$

We start with 1 . Since $1 \rightarrow 3$, we start with $(13 \ldots$. Now $3 \rightarrow 5$, so we write $(135 \ldots) .5 \rightarrow 6$ So, $(1356 \ldots)$. Finally $6 \rightarrow 1$ so the cycle is complete, hence (1356).

Now the first element not represented lie the above is 2 and $2 \rightarrow 2$, so we leave it. The next element not represented is 4 and $4 \rightarrow 7$, so we write $(47 \ldots)$. And $7 \rightarrow 4$ so the cycle is completed and we write (47).

Finally $8 \rightarrow 8=0$ we leave it. So combining above, ir the cycle notation, we see

$$
\beta=(1356)(47)
$$

Observe that above representation is giving us all the informations about β and is much simpler to write.
Let's see one more example before we see the uses of the cycle notation.

Let $r \in S_{5}$ and

$$
r=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 5 & 3 & 1
\end{array}\right] \text {. Following the }
$$

procedure above, we see

$$
\gamma=(12435)
$$

Note that the identity element in S_{n} maps
even element to itself so how do we write that in the cycle notation? Well, $y \in$ is the identity element of, say S_{4}, then we simply write any of the element of $\{1,2,3,4\}$ is a bracket. So, $\epsilon=(1)$ or $\epsilon=(2)$ or $\epsilon=(3)$ or $\epsilon=(4)$.

Remark :- Just remember that any element missing in the cycle notation means that it is mapped to itself.

Question How to see the group operation ai the cycle notation?

Suppose $\alpha, \beta \in S_{7}$ and $\alpha=(124)(356)$ and $\beta=(13546)$. What is $\alpha \cdot \beta$? First of all remember that when we compose functions
then we first apply β and then α. Now the process is simple: $\alpha \cdot \beta \in S_{7}$, so

* Start with 1. $\alpha \cdot \beta(1)=\alpha \cdot \beta(1)=\alpha(\beta(1))$.

Now $\beta(1)=3$ and $\alpha(3)=5 \Rightarrow \alpha \cdot \beta(1)=5$ so we get $(15 \ldots)$.

* Next we take 5. $\alpha \cdot \beta(5)=\alpha(\beta(5))=\alpha(4)=1$ So $\alpha . \beta(5)=1$ and the cycle stops, so we get (15).
* The first element not represented above is

2. So $\alpha \cdot \beta(2)=\alpha(\beta(2))=\alpha(2)=4$, because we haven't written 2 in $\beta \Rightarrow \beta(2)=2$. So $\alpha \cdot \beta(2)=4$ hence we get $(24 \ldots)$.

* We look at $\alpha \cdot \beta(4)=\alpha(\beta(4))=\alpha(6)=3$.

So we get ($243 \ldots$).

* We look at $\alpha \cdot \beta(3)=\alpha(\beta(3))=\alpha(5)=6$. So we get ($2436 \ldots$).
* We look at $\alpha \cdot \beta(6)=\alpha(\beta(6))=\alpha(1)=2$. Hence the cycle completes and we get ($\left.24 \begin{array}{lll}2 & 4 & 6\end{array}\right)$.
* Finally the only element left is 7 .
$\alpha \cdot \beta(7)=\alpha(\beta(7))=\alpha(7)=7$. So we mon't write it. So we get

$$
\alpha \cdot \beta=(15)(2436) .
$$

We end with two definitions.
Definition An expression of the form $\left(a_{1}, a_{2}, \ldots a_{m}\right)$ is calle a cycle of length mor an m-cycle.

Definition A 2-cycle is called a tromsposition.

Exercise Practise the cycle notation with arbitra--ry permutations of your choice.

